Exam on architect mathematics 5.6.2024

Instruction: Write your name and identity number clearly on the upper edge of each answer sheet. Start answering on the size sheet (folded A3) and if needed, continue on separate semi-sheets (A4). Mark it clearly if the answer continues to the next sheet. Justify your answers. Place the separate semi-sheets in between the size sheet when returning the exams answers. Tools: Writing instruments and a pocket calculator or a scientific calculator.

Question 1. The price of electricity rose by 20%. By how many percent the consumption can rise at most, if the electricity costs must not rise more than 30% ?

Model response: Let M be the electricity cost before the price increase, and let p be the percentage of consumption growth. Then the new costs are $M \cdot 1,2 \cdot\left(1+\frac{p}{100}\right)$. This can be at most $M \cdot 1.3$, whence

$$
M \cdot 1,2 \cdot\left(1+\frac{p}{100}\right)=M \cdot 1,3 \Leftrightarrow 1+\frac{p}{100}=\frac{1,3}{1,2} \Leftrightarrow p=8,333 \ldots .
$$

Question 2. The annual population increase in a residentian area is 2%. How many years it takes to double the population?

Model response: Let V be the original population. The population after n years is then $V \cdot 1,02^{n}$. Hence we get equation

$$
V \cdot 1,02^{n}=2 V \Leftrightarrow 1,02^{n}=2 \Leftrightarrow n \ln 1,02=\ln 2 \Leftrightarrow n=\frac{\ln 2}{\ln 1,02}=35.0028 \ldots .
$$

Question 3. A bridge over a 96 m wide river has a profile of a circle arc (figure). The highest point of the bridge in the middle of river is 16 m higher than the ends of the bridge. What is the length of the bridge arc?

Model response: To find the arc length we need the find the radius of the circle and the central angle the corresponding to the arc. We get

$$
(r-16)^{2}+48^{2}=r^{2} \Leftrightarrow r^{2}-32 r+16^{2}+48^{2}=r^{2} \Leftrightarrow r=80
$$

Half of the central angle corresponding to the arc is given by $\tan \alpha=\frac{48}{64}=\frac{3}{4}$, hence $\alpha=0.643501 \ldots(\mathrm{rad})$. Thus the central angle is $2 \alpha=1.2870 \ldots$. Hence the length of the bridge arc is $1.2870 \cdot 80=102.96 \ldots$ (meters).

Question 4. A javelin throw reached a length of 80 meters. Assume that the arc of the throw follows strictly a parabola in the $x y$-coordinate system in interval $x \in[0,80]$. Determine the equation of the arc, when the starting point of the throw is $(0,0)$, and the maximum height of is exactly 16 m .

Model response: Equation of a parabola is of form $y=a x^{2}+b x+c$. We know that $y=0$ if $x=0$ or $x=80$. Thus we obtain equations $0=c$ ja $0=a \cdot 80^{2}+b \cdot 80+c$. The top of the parabola is in the halfway of zeros 0 and 80 , so $y=16$ if $x=40$. Hence we get equation $16=a \cdot 40^{2}+b \cdot 40+c$. Because $c=0$, we get a pair of equations

$$
\left\{\begin{array}{rr}
6400 a+80 b & =0 \\
1600 a+40 b= & 16
\end{array}\right.
$$

The first equation gives $b=-80 a$, and substituting this to the second one we get $-1600 a=16$, whence $a=-\frac{1}{100}$, and therefore $b=\frac{4}{5}$. Hence the requested parabola equation is $y=-\frac{1}{100} x^{2}+\frac{4}{5} x$.

